Telegram Group & Telegram Channel
Исследователи Яндекса разработали и выложили в опенсорс один из крупнейших датасетов для развития рекомендательных систем — YaMBDa

Датасет включает 4,79 миллиардов обезличенных пользовательских действий в Яндекс Музыке. Он включает в себя только числовые идентификаторы, что позволяет сохранить конфиденциальность.

Открытые датасеты такого масштаба от коммерческих компаний — редкость. При этом даже те, что есть (LFM-1B, LFM-2B) со временем стали недоступны из-за лицензионных ограничений, а популярные датасеты от Steam или Netflix Prize фокусировались лишь на обратной связи и содержали несколько десятков млн взаимодействий.

Поэтому, во-первых, у большинства исследователей попросту не было доступа к web‑scale‑сервисам, следовательно — и возможности протестировать алгоритмы в условиях, приближенных к реальности. А во-вторых, многие датасеты не позволяли разделить выборку на train и test по хронологии: это критично, когда речь идет об алгоритмах, которые должны предсказывать будущее, а не анализировать прошлое.

YaMBDa (YAndex Music Billion-interactions DAtaset) решает обе проблемы. Его можно использовать не только для оценки качества стримминговых систем, но и для e-commerce, соцсетей и других задач рекомендаций. Датасет доступен в трех вариантах: полная версия содержит почти 5 млрд данных, а уменьшенные — 500 млн и 50 млн. Можно выбрать версию, которая соответствует задачам и вычислительным ресурсам. Используя этот датасет, разработчики, исследователи и молодые ученые смогут тестировать и улучшать алгоритмы в продуктах, где используются рекомендательные системы.



tg-me.com/machinelearning_interview/1821
Create:
Last Update:

Исследователи Яндекса разработали и выложили в опенсорс один из крупнейших датасетов для развития рекомендательных систем — YaMBDa

Датасет включает 4,79 миллиардов обезличенных пользовательских действий в Яндекс Музыке. Он включает в себя только числовые идентификаторы, что позволяет сохранить конфиденциальность.

Открытые датасеты такого масштаба от коммерческих компаний — редкость. При этом даже те, что есть (LFM-1B, LFM-2B) со временем стали недоступны из-за лицензионных ограничений, а популярные датасеты от Steam или Netflix Prize фокусировались лишь на обратной связи и содержали несколько десятков млн взаимодействий.

Поэтому, во-первых, у большинства исследователей попросту не было доступа к web‑scale‑сервисам, следовательно — и возможности протестировать алгоритмы в условиях, приближенных к реальности. А во-вторых, многие датасеты не позволяли разделить выборку на train и test по хронологии: это критично, когда речь идет об алгоритмах, которые должны предсказывать будущее, а не анализировать прошлое.

YaMBDa (YAndex Music Billion-interactions DAtaset) решает обе проблемы. Его можно использовать не только для оценки качества стримминговых систем, но и для e-commerce, соцсетей и других задач рекомендаций. Датасет доступен в трех вариантах: полная версия содержит почти 5 млрд данных, а уменьшенные — 500 млн и 50 млн. Можно выбрать версию, которая соответствует задачам и вычислительным ресурсам. Используя этот датасет, разработчики, исследователи и молодые ученые смогут тестировать и улучшать алгоритмы в продуктах, где используются рекомендательные системы.

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1821

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Machine learning Interview from cn


Telegram Machine learning Interview
FROM USA